Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(7): 076802, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142329

RESUMO

Topological effects in edge states are clearly visible on short lengths only, thus largely impeding their studies. On larger distances, one may be able to dynamically enhance topological signatures by exploiting the high mobility of edge states with respect to bulk carriers. Our work on microwave spectroscopy highlights the response of the edges which host very mobile carriers, while bulk carriers are drastically slowed down in the gap. Though the edges are denser than expected, we establish that charge relaxation occurs on short timescales and suggest that edge states can be addressed selectively on timescales over which bulk carriers are frozen.

2.
Nat Nanotechnol ; 14(9): 815-817, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31358943
3.
Nano Lett ; 18(8): 4831-4836, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29975844

RESUMO

The topic of two-dimensional topological insulators has blossomed after the first observation of the quantum spin Hall (QSH) effect in HgTe quantum wells. However, studies have been hindered by the relative fragility of the edge states. Their stability has been a subject of both theoretical and experimental investigation in the past decade. Here, we present a new generation of high quality (Cd,Hg)Te/HgTe-structures based on a new chemical etching method. From magnetotransport measurements on macro- and microscopic Hall bars, we extract electron mobilities µ up to about 400 × 103 cm2/(V s), and the mean free path λmfp becomes comparable to the sample dimensions. The Hall bars show quantized spin Hall conductance, which is remarkably stable up to 15 K. The clean and robust edge states allow us to fabricate high quality side-contacted Josephson junctions, which are significant in the context of topological superconductivity. Our results open up new avenues for fundamental research on QSH effect as well as potential applications in spintronics and topological quantum computation.

4.
Nat Nanotechnol ; 12(2): 137-143, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27570940

RESUMO

In recent years, Majorana physics has attracted considerable attention because of exotic new phenomena and its prospects for fault-tolerant topological quantum computation. To this end, one needs to engineer the interplay between superconductivity and electronic properties in a topological insulator, but experimental work remains scarce and ambiguous. Here, we report experimental evidence for topological superconductivity induced in a HgTe quantum well, a 2D topological insulator that exhibits the quantum spin Hall (QSH) effect. The a.c. Josephson effect demonstrates that the supercurrent has a 4π periodicity in the superconducting phase difference, as indicated by a doubling of the voltage step for multiple Shapiro steps. In addition, this response like that of a superconducting quantum interference device to a perpendicular magnetic field shows that the 4π-periodic supercurrent originates from states located on the edges of the junction. Both features appear strongest towards the QSH regime, and thus provide evidence for induced topological superconductivity in the QSH edge states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...